一、基本信息
学历:博士研究生
职称:研究员
邮箱:suhy@dgut.edu.cn
二、简历介绍
苏海燕,女,汉族,1980年生于黑龙江省。理学博士,研究员,博士生导师。2009年博士毕业于中科院大连化学物理研究所物理化学专业,师从包信和院士、李微雪研究员(杰青);2009.1−2010.12在丹麦技术大学从事博士后研究,合作导师Jens Norskov、Jan Rossmeisl;2011.3-2019.8先后在中科院大连化学物理研究所催化基础国家重点实验室和分子反应动力学国家重点实验室工作;2019年8月以学科方向领军人才引进77779193永利,应用化学系学术带头人。
主要从事基于第一性原理计算和微观动力学的多相催化理论研究,研究方向包括能源催化转化过程,如CO、CO2催化加氢和电化学还原、水煤气变换、甲酸分解等的机理研究和材料设计;利用第一性原理和机器学习研究催化材料结构和性能的构-效关系等。
共发表 SCI论文60余篇,其中以(共同)一作/通讯在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed.和ACS Catal.等期刊发表论文35篇。1篇封面,1篇Feature article,3篇热点论文(1篇内页、1篇周精选),论文总引用6000余次,单篇最高引用2400余次,H因子31。主持国家自然科学基金青年基金1项和面上项目3项、大连化学物理研究所催化基础国家重点实验室自主研究课题及永利集团高层次人才项目各1项;参与国家重点研发计划、中科院战略性先导科技专项和神华集团低碳研究所等项目。Computational Materials Science期刊Review Editor;Angew. Chem. Int. Ed., ACS Catal.和Adv. Funct. Mater.等期刊审稿人。
三、发表论文
1. Interplay between surface structure, reaction condition and mechanism for ammonia decomposition on Ru catalyst, X. X. Zou, H. Y. Su*, X. B. Sun, W. Y. Pang, X. F. Hao, Y. H. Xu, K. J. Sun*, Appl. Surf. Sci. 2024, 649, 159175
2. W. B. Liao, W. C. Wu, G. Y. Zhong*, S. S. Zhang; J. G. Song, X. B. Fu, S. M. Huang, S. N. Zheng, Y. J. Xu, H. Y. Su*, Cobalt nanoparticles encapsulated in nitrogen-doped carbons derived from Co-metal-organic frameworks with superb adsorption capacity for tetracycline, Sep. Purif. Technol. 2023, 326, 124793
3. A structure-sensitive descriptor for the design of active sites on MoS2 catalysts, H. Y. Su, F. Calle-Vallejo*, K. J. Sun*, Catal. Sci. Technol. 2023, 13, 5290
4. Origin for the chloride and citrate ions tuned morphology of Pd particles, K. J. Sun, X. B. Sun, X. X. Zou, W. Y. Pang, X. F. Hao, Y. H. Xu, H. Y. Su*, Appl. Surf. Sci. 2023, 638, 158082
5. First-principles and microkinetic simulation studies of CO2 hydrogenation mechanism and active site on MoS2 catalyst, H. Y. Su, W. B. Liao*, K. J. Sun*, Appl. Surf. Sci. 2023, 635, 157721
6. Identification of Cu/Sc and Cu/Ti subsurface alloys for highly efficient CO electroreduction to C2 products, H. Y. Su, X. F. Ma*, K. J. Sun*, Appl. Surf. Sci. 2023, 627, 157314
7. Structure and reaction condition dependent mechanism for ammonia synthesis on Ru-based catalyst, K. J. Sun, X. X. Zou, X. B. Sun, W. Y. Pang, X. F. Hao, Y. H. Xu, H. Y. Su*, Appl. Surf. Sci. 2023, 613, 156060
8. Photosynthesis assembling of ZCS/PO/Ni3Pi2 catalyst for three-stage photocatalytic water splitting into H2 and H2O2, J. G. Song*, H. Y. Su*, G. Y. Zhong, Y. Liu, X. Huang, J. Zhou, R. R. Miao, C. Li, W. B. Liao, X. B. Fu, S. M. Kang, Z. Y. Lim, H. Y. Liu, X. Y. Li, A. You*, F. Peng*, Colloid Surface A 2023, 656, 130417
9. Finding key factors for efficient water and methanol activation at metals, oxides, mxenes, and metal/oxide interfaces, H. Y. Su, K. J. Sun*, X. K. Gu, S. S. Wang, J. Zhu, W. X. Li, C. H. Sun, F. Calle-Vallejo*, ACS Catal. 2022, 12, 1237
10. Photochemical construction of ZnCdS/PO/FeCoNiPi-MnO composite for efficient tandem application of photocatalytic partial water splitting and overall water splitting, J. G. Song*, H. Y. Su*, M. Fang, L. Han, J. Y. Chu, C. Li, R. R. Miao, W. L. Yao, G. Zhang, A. You*, J. Mater. Chem. A 2022, 10, 16029
11. Single-atom metal tuned sulfur vacancy for efficient H2 activation and hydrogen evolution reaction on MoS2 basal plane, H. Y. Su, X. F. Ma, K. J. Sun*, Appl. Surf. Sci. 2022, 597, 153614
12. Bridge sulfur vacancies in MoS2 catalyst for reverse water gas shift: A first-principles study, H. Y. Su, K. J. Sun*, J. X. Liu, X. F. Ma, M. Z. Jian, C. H. Sun, Y. J. Xu, H. B. Yin, W. X. Li*, Appl. Surf. Sci. 2021, 561, 149925
13. A synergetic effect between a single Cu site and S vacancy on an MoS2 basal plane for methanol synthesis from syngas, H. Y. Su, X. F. Ma, C. H. Sun*, K. J. Sun*, Catal. Sci. Technol. 2021, 11, 3261
14. Mechanistic insights into direct methane oxidation to methanol on single-atom transition-metal-modified graphyne, L. J. Arachchige, A. Dong, T. Y. Wang, H. Li*, X. L. Zhang, F. Wang, H. Y. Su, C. H. Sun*, ACS Appl. Nano Mater. 2021, 4, 12006
15. Highly selective production of ethylene by electroreduction of carbon monoxide, R. X. Chen+, H. Y. Su+, D. Y. Liu, R. Huang, X. G. Meng, X. J. Cui, Z. Q. Tian, D. H. Zhang, D. H. Deng*, Angew. Chem. Int. Ed. 2020, 59, 154 (Hot paper/Frontispiece)
16. Trends in C-O and N-O bond scission on rutile oxides described using oxygen vacancy formation energies, H. Y. Su, X. F. Ma, K. J. Sun*, C. H. Sun, Y. J. Xu, F. Calle-Vallejo*, Chem. Sci. 2020, 11, 4119 (2020 Chemical Science HOT Article Collection/2020 ChemSci Pick of the Week Collection)
17. CO activation and methanation mechanism on hexagonal close-packed Co catalysts: effect of functionals, carbon deposition and surface structure, H. Y. Su, C. L. Yu, J. X. Liu, Y. H. Zhao, X. F. Ma, J. Luo, C. H. Sun, W. X. Li*, K. J. Sun*, Catal. Sci. Technol. 2020, 10, 3387
18. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction, Z. Pan, K. Wang, K. H. Ye, Y. Wang, H. Y. Su, B. H. Hu, J. Xiao, T. W. Yu, Y. Wang*, S. Q. Song*, ACS Catal. 2020, 10, 3871
19. Synthesis of iron-carbide nanoparticles: identification of the active phase and mechanism of Fe-based Fischer–Tropsch synthesis, H. B. Zhao+, J. X. Liu+, C. Yang+, S. Y. Yao, H. Y. Su, Z. R. Gao, M. Dong, J. H. Wang, A. I. Rykov, J. G. Wang, Y. L. Hou*, W. X. Li*, D. Ma*, CCS Chem. 2020, 2, 2712
20. Application of coverage dependent micro kinetic study to investigate direct H2O2 synthesis mechanism on Pd(111) surface, K. J. Sun*, X. Song, X. F. Hao, H. Y. Su, Y. H. Xu, Theo. Chem. Acc. 2020, 139, 170
21. Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production, X. J. Cui+, H. Y. Su+, R. X. Chen+, L. Yu, J. C. Dong, C. Ma, S. H. Wang, J. F. Li, F. Yang, J. P. Xiao, M. T. Zhang, D. Ma, D. H. Deng*, D. H. Zhang, Z. Q. Tian, X. H. Bao, Nat. Commun. 2019, 10, 86 (Feature article)
22. Single Ru sites-embedded rutile TiO2 catalyst for non-oxidative direct conversion of methane: A first-principles study, X. F. Ma, K. J. Sun, J. X. Liu, W. X. Li, X. M. Cai, H. Y. Su*, J. Phys. Chem. C 2019, 123, 14391
23. Interplay between site activity and density of BCC iron for ammonia synthesis based on first-principles theory, B. Y. Zhang+, H. Y. Su+, J. X. Liu, W. X. Li*, ChemCatChem, 2019, 11, 1928
24. Facet-dependent of catalytic selectivity: the case of H2O2 direct synthesis on Pd surfaces, X. Song, K. J. Sun*, X. F. Hao, H. Y. Su, X. F. Ma, Y. H. Xu, J. Phys. Chem. C 2019, 123, 26324
25. Influence of cobalt crystal structures on activation of nitrogen molecule: A first-principles study, B. Y. Zhang+, P. P. Chen+, J. X. Liu*, H. Y. Su, W. X. Li*, J. Phys. Chem. C 2019, 123, 10956
26. First-principles and microkinetic simulation studies of the structure sensitivity of Cu catalyst for methanol steam reforming, S. S. Wang+, X. K. Gu+, H. Y. Su, W. X. Li*, J. Phys. Chem. C 2018, 122, 10811
27. Structures and stability of adsorbed methanol on TiO2 (110) surface studied by ab initio thermodynamics and kinetic Monte Carlo simulation, K. J. Sun*, H. Y. Su, W. X. Li*, Theo. Chem. Acc. 2018, 137, 128
28. First-principles microkinetic study of methanol synthesis on Cu(221) and ZnCu(221) surfaces, S. S. Wang, M. Z. Jian, H. Y. Su, W. X. Li*, Chinese J. Chem. Phys. 2018, 31, 284
29. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2-to-CO conversion, X. D. Chen+, X. Su+, H. Y. Su*, X. Y. Liu, S. Miao, Y. H. Zhao, K. J. Sun, Y. Q. Huang*, T. Zhang, ACS Catal. 2017, 7, 4613
30. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis on HCP cobalt catalysts, H. Y. Su, Y. H. Zhao, J. X. Liu, K. J. Sun*, W. X. Li*, Catal. Sci. Technol. 2017, 7, 2967 (2017 Catalysis Science & Technology HOT Articles)
31. Differentiating intrinsic reactivity of copper, copper-zinc alloy, and copper/zinc oxide interface for methanol steam reforming by first-principles theory, S. S. Wang+, H. Y. Su+, X. K. Gu, W. X. Li*, J. Phys. Chem. C 2017, 121, 21553
32. H2O and CO coadsorption on Co (0001): The effect of intermolecular hydrogen bond, J. W. Wu, J. Chen, Q. Guo*, H. Y. Su*, D. X. Dai, X. M. Yang*, Surf. Sci. 2017, 663, 56
33. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer-Tropsch synthesis, W. Z. Li+, J. X. Liu+, J. Gu+, W. Zhou, S. Y. Yao, R. Si, Y. Guo, H. Y. Su, C. H. Yan, W. X. Li*, Y. W. Zhang*, D. Ma*, J. Am. Chem. Soc. 2017, 139, 2267 (引用>100次)
34. Carbon induced selective regulation of cobalt based Fischer-Tropsch catalysts by ethylene treatment, P. Zhai+, P. P. Chen+, J. L. Xie, J. X. Liu, H. B. Zhao, L. L. Lin, B. Zhao, H. Y. Su, Q. J. Zhu, W. X. Li*, D. Ma*, Faraday Discuss. 2017, 197, 207
35. Establishing and understanding adsorption−energy scaling relations with negative slopes, H. Y. Su+, K. J. Sun+, W. Q. Wang, Z. H. Zeng, F. Calle-Vallejo*, W. X. Li*, J. Phys. Chem. Lett. 2016, 7, 5302
36. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study, J. X. Liu, B. Y. Zhang, P. P. Chen, H. Y. Su, W. X. Li*, J. Phys. Chem. C 2016, 120, 24895
37. DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites, H. Y. Su, K. J. Sun*, J. Mater. Sci. 2015, 50, 1701
38. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface, Y. P. Pei, J. X. Liu, Y. H. Zhao, Y. J. Ding*, T. Liu, W. D. Dong, H. J. Zhu, H. Y. Su, L. Yan, J. L. Li, W. X. Li*, ACS Catal. 2015, 5, 3620 (引用>100次)
39. Preferential cleavage of C-C bonds over C-N bonds at interfacial CuO-Cu2O sites, M. Wang, X. K. Gu, H. Y. Su, J. M. Lu, J. P. Ma, M. Yu, Z. Zhang, F. Wang*, J. Catal. 2015, 330, 458
40. A first-principles study of carbon-oxygen bond scission in multiatomic molecules on flat and stepped metal surfaces, Y. H. Zhao, J. X. Liu, H. Y. Su*, W. X. Li*, ChemCatChem 2014, 6, 1755
41. Single Pd atom embedded in CeO2(111) for NO reduction with CO: A first-principles study, W. C. Ding, X. K. Gu, H. Y. Su, W. X. Li*, J. Phys. Chem. C 2014, 118, 12216
42. Co–Co2C and Co–Co2C/AC Catalysts for Hydroformylation of 1-Hexene under Low Pressure: Experimental and Theoretical Studies, W. D. Dong, J. X. Liu, H. J. Zhu, Y. J. Ding*, Y. P. Pei, J. Liu, H. Du, M. Jiang, T. Liu, H. Y. Su, W. X. Li*, J. Phys. Chem. C 2014, 118, 19114
43. Stability of Polar ZnO Surfaces Studied by Pair Potential Method and Local Energy Density Method, K. J. Sun, H. Y. Su, W. X. Li*, Theo. Chem. Acc. 2014, 133, 1427
44. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC, J. X. Liu+, H. Y. Su+, D. P. Sun, W. X. Li, J. Am. Chem. Soc. 2013, 135, 16284 (引用>300次)
45. Structure Sensitivity of CO Methanation on Co (0001), (10-12) and (11-20) Surfaces: Density Functional Theory Calculations, J. X. Liu, H. Y. Su*, W. X. Li*, Catal. Today 2013, 215, 36
46. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis, H. Wang, W. Zhou, J. X. Liu, R. Si, G. Sun, M. Q. Zhong, H. Y. Su, S. J. Pennycook, J. C. Idrobo, W. X. Li*, Y. Kou*, D. Ma*, J. Am. Chem. Soc. 2013, 135, 4149 (引用>100次)
47. Number of Outer Electrons as Descriptor for Adsorption Processes on Transition Metals and Their Oxides, F. Calle-Vallejo, N. G. Inoglu, H. Y. Su, J. I. Martinez, I. C. Man, MTM. Koper, J. Kitchin, J. Rossmeisl, Chem. Sci. 2013, 4, 1245 (引用>200次)
48. First-principles Study of Water Activation on Cu-ZnO Catalysts, K. Yao, S. S. Wang, X. K. Gu, H. Y. Su, W. X. Li*, Chinese J. Catal. 2013, 34, 1705
49. Ab Initio Atomistic Thermodynamics Study of Pt3Ni (111) Surface under Oxygen Environments, D. P. Sun, Y. H. Zhao, H. Y. Su, W. X. Li*, Chinese J. Catal. 2013, 34, 1434
50. Identifying Active Surface Phases for Metal Oxide Electrocatalysts: A Study of Manganese Oxide Bi-functional Catalysts for Oxygen Reduction and Water Oxidation Catalysis, H. Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Norskov, T. F. Jaramillo*, J. Rossmeisl*, Phys. Chem. Chem. Phys. 2012, 14, 14010 (引用>200次)
51. CO Oxidation at the Perimeters of an FeO/Pt(111) Interface and How Water Promotes the Activity: A First-Principles Study, X. K. Gu, R. H. Ouyang, D. P. Sun, H. Y. Su, W. X. Li*, ChemSusChem 2012, 5, 871
52. Theoretical Study of the Role of a Metal-Cation Ensemble at the Oxide-Metal Boundary on CO Oxidation, D. P. Sun, X. K. Gu, R. H. Ouyang, H. Y. Su, Q. Fu, X. H. Bao, W. X. Li*, J. Phys. Chem. C 2012, 116, 7491
53. Structural and Electronic Properties of Cobalt Carbide Co2C and Its Surface Stability: Density Functional Theory Study, Y. H. Zhao, H. Y. Su, K. J. Sun, W. X. Li*, Surf. Sci. 2012, 606, 598
54. Force Reversed Method for Locating Transition States, K. J. Sun, Y. H. Zhao, H. Y. Su, W. X. Li*, Theo. Chem. Acc. 2012, 131, 1118
55. Density Functional Theory Study of Ethylene Hydroformylation on Rh(111) and RhCu(111) Surface, X. F. Ma, Y. H. Zhao, H. Y. Su, W. X. Li*, Chinese J. Catal. 2012, 33, 1706
56. Structure Evolution of Pt-3d Transition Metal Alloys under Reductive and Oxidizing Conditions and Effect on the CO Oxidation: A First-principles Study, H. Y. Su, X. K. Gu, X. F. Ma, Y. H. Zhao, X. H. Bao, W. X. Li*, Catal. Today 2011, 165, 89
57. Rh-Decorated Cu Alloy Catalyst for Improved C2 Oxygenate Formation from Syngas, Y. H. Zhao, M. M. Yang, D. P. Sun, H. Y. Su*, K. J. Sun, J. X. Liu, X. H. Bao, W. X. Li*, J. Phys. Chem. C 2011, 115, 18247
58. Carbon Chain Growth by Formyl Insertion on Rhodium and Cobalt Catalysts in Syngas Conversion, Y. H. Zhao, K. J. Sun, X. F. Ma, J. X. Liu, D. P. Sun, H. Y. Su, W. X. Li*, Angew. Chem. Int. Ed. 2011, 50, 5335 (引用>100次)
59. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, I. C. Man, H. Y. Su, F. Calle-Vallejo, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. Norskov, J. Rossmeisl*, ChemCatChem 2011, 3, 1159 (Cover,引用>200次)
60. Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution, M. Mota, A. Vojvodic, H. Metiu, I. C. Man, H. Y. Su, J. Rossmeisl, J. K. Norskov*, ChemCatChem 2011, 3, 1607 (引用>100次)
61. Carbon Monoxide Adsorption and Dissociation on Mn-decorated Rh(111) and Rh(553) Surfaces: A First-principles Study, X. F. Ma, H. Y. Su, H. Q. Deng, W. X. Li*, Catal. Today 2011, 160, 228
62. Interface-Confined Ferrous Centers for Catalytic Oxidation, Q. Fu+, W. X. Li+, Y. X. Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, X. H. Bao*, Science 2010, 328, 1141 (引用>700次)
63. First-Principles Study of Carbon Monoxide Oxidation on Ag(111) in Presence of Subsurface Oxygen and Stepped Ag(221), H. Y. Su, Z. H. Zeng, X. H. Bao*, W. X. Li*, J. Phys. Chem. C 2009, 113, 8266
64. Reversible Structural Modulation of Fe-Pt Bimetallic Surfaces and Its Effect on Reactivity, T. Ma, Q. Fu*, H. Y. Su, H. Y. Liu, W. X. Li, X. H. Bao*, Chem. Phys. Chem. 2009, 10, 1013
65. The Effect of Water on the CO Oxidation on Ag(111) and Au(111) Surfaces: A First-Principle Study, H. Y. Su, M. M. Yang, X. H. Bao*, W. X. Li*, J. Phys. Chem. C 2008, 112, 17303 (引用>100次)
66. Modulating the Reactivity of Ni-containing Pt(111)-skin Catalysts by Density Functional Theory Calculations, H. Y. Su, X. H. Bao*, W. X. Li*, J. Chem. Phys. 2008, 128, 194707
67. Density Function Theory Study of CO Catalytic Oxidation on Pt(111) Pt3Ni(111) Surfaces, H. Y. Su, W. X. Li*, X. H. Bao*, Chinese J. Catal. 2008, 29, 683
四、承担科研项目
1. 国家自然科学基金委员会,面上项目,22172026,基于机器学习的高熵合金电化学水气变换阳极材料设计,2022-01至2025-12,60万元,在研,主持。
2. 国家自然科学基金委员会,面上项目,21872136,硫化钼基材料表面配位环境和协同效应对合成气选择性调控的理论研究,2019-01至2022-12,65万元,在研,主持。
3. 国家自然科学基金委员会,面上项目,21273224,基于金属催化材料形貌的反应动力学理论研究,2013-01至2016-12,65万元,已结题,主持。
4. 国家自然科学基金委员会,青年科学基金项目,21103164,高温固体氧化物电解池阳极材料的密度泛函理论研究,2012-01至2014-12,25万元,已结题,主持。
5. 中国科学院大连化学物理研究所催化基础国家重点实验室,自主研究课题,基于金属催化材料形貌的反应动力学理论研究,2012-05至2014-04,30万元,已结题,主持。
6. 永利集团,高层次人才项目,2017-11至2022-11,80万元,已结题,主持。
7. 中国科学院,战略性先导科技专项,XDA09030101,甲烷直接制乙烯、苯和氢气,2013-07至2018-06,4033.71万元,已结题,参加(个人获得经费89万元)。
8. 科学技术部,国家重点研发计划纳米科技专项,2017YFA0204800,新型纳米材料高效结构优化、功能预测及材料设计,2017-07至2022-06,2360万元,已结题,参加(个人获得经费75万元)。
9. 神华集团低碳研究所,研究项目,RD1102010,高温电化学电解水和二氧化碳工艺,2010-12至2011-11,110万元,已结题,参加(个人获得经费30万元)。
10. 科学技术部,国家重点研发计划,2021YFB2400202,固态电池失效与热失控行为研究,2021-12至2025-11,4429万元,在研,参加。
11. 中国科学院,前沿科学重大突破择优支持项目,表界面催化反应过程本质,2014-01至2015-12,1100万元,已结题,参加。
五、计算模拟程序(Program)
本课题组采用的微观动力学模拟程序详见附件,更多关于该方法的介绍请参考我们最近的工作Appl. Surf. Sci. 2024, 649, 159175。
(The microkinetic modeling program YSU_MKM used by our research group can be downloaded in the attachment. For more information on this method, please refer to our recent work Appl Surf Sci 2024, 649, 159175.)